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Single-molecule intensity distributions for monomeric CD86 are not symmetric

The oligomeric size of GPCRs determined using single-particle GMimPro (Mashanov et al., 2007)  u-track (Jagaman et al., 2008)  GPU ML fit (Smith et al., 2010)
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Oxygen scavangers can be used to improve stability

Only cell-surface labelling The M, muscarinic receptor, monomeric CD86 and dimeric CD28 produce similar single-molecule in-
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